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CHAPTER 1

INTRODUCTION

This report is the result of CENSEI's basic research work on critical

issues concerning system engineering and integration of spread spectrum.

systems, in concert with applications of distributed systems architectures, to

provide information distribution for C2 information management systems

operating in a comiunications-bounded environment. In a communications-

bounded environment, subscribers on a given network are trananitting at

maximum subscriber capacity. Network capacity is not the simple sum of

subscriber capacities. Rather, it can be a complex function of the number of

subscribers, their topological distribution, and their offered traffic load.

The RF resource, however, is limited, and saturation, which translates to

self-jamming, will result as more subscribers are operating, or as more

capacity is allocated and utilized by each subscriber. The long term goal is

to derive a meaningful portrayal of performance degradation due to self-

jamming in spread spectrum system candidates for the Army's survivable C3

network. Such a portrayal will then be used by the Army system engineers to

ensure that network capacity is adequate for given user applications.

Initially, performance degradation was studied for hybrid direct-sequence/

frequency-hop systems. In the course of this study, it became apparent that

performance degradation was also a function of the receiver decision logic,

which is the subject of this report.

The spread spectrum communications system which was studied uses an

alphabet of 32 symbols to coemmunicate messages. A symbol is represented by a

1 h =1



sequence of 32 chips. (A chip is a binary (+I,-I) digit which takes on a

value of either +1 or -1.) A sequence of 32 chips is cyclically shifted to

generate the entire 32-symbol alphabet.

The system uses a Reed-Solomon code for channel encoding. (he reader is

referred to Macwilliams & Sloane (11 for a discussion on the Reed-Solomon

codes.) An R-S (31,15) code is used to encode 15 information symbols into 31

channel symbols, so that 16 symbols are used for error correction and error

detection purposes. The code allows for forward-error correction if

2e + E < 17 (1-1)

where e : the number of symbol errors and E - the number of symbol erasures

within the 31-symbol code word. tf -

2e + E 17 (1-2)

then a decoding error will occur.

The probability of a word error (P W or the expected relative frequency

of a word decoding error, where a word is represented by an R-S (31,15) code,

can be formulated using the probability of a symbol error (Pe) and the

probability of a symbol erasure (PE) as independent variables. But PE and P
E e

are not independent variables: they are dependent upon the signal-to-noise

ratio (SNR), the modulation technique used, and the threshold setting for the

decision rule used. Nevertheless, constant Pw curves as a function of PE and

P can be plotted on log x log graph paper. The set of Pw curves becomes a

powerful tool when used in conjuction with the P vs.P plot with constant SNR

2
-' . ,.



curves, because by superimposing the curves we can relate SNR toP

Decision rules for detection of spread spectrum signals were

investigated. Decision rules were designed using simple and ratio

*thresholding techniques. For each decision rule, the performance of the

detection system in terms of Pand Pe was analyzed. The obtained data were
E.e

* used to plot constant SNR curves and constant threshold curves. With the use

of the Pw curves the optimum threshold setting was found for a given SNR.

Orthogonal signalling (FSK) and antipodal signalling (PSK) were

investigated to determine their effects on the performance of the detection

system.

Analog and digital correlations were considered. The performance curves

of analog correlation and digital correlation were compared.

Monte Carlo simulation of the digital detection process using the

threshold decision rule was used to produce the performance data which can be

compared with the results of the analysis.

3



CHAPTER 2

DETECTIOI THEORY APPLIED TO 32-AnY ORTHOGONAL SIGNALS

For radio comunications, a transmitted signal becomes corrupted with an

additive gaussian white noise when it reaches its destination. Because a

signal attenuates during its propagation, signal degradation due to the

presence of the noise in the signal becomes a problem especially for long

distance transmissions. Because the white gaussian noise is a random process,

the likelihood of a detection error occurring is described in terms of the

probability of an (detection) error.

A received signal is represented by

y(t) x(t) + nw (t) (2-1)

where x(t) is the tranmitted signal and n(t) is the gaussian white noise.

The noise nw (t) is assumed to have the white spectral density

G(f) =N/2. (2-2)
0

The receiver operates on the received signal y(t) to determine which of the

symbols i1, i-l,2,..,M, were sent.

If Vi is a symbol belonging to the set

- "il ~ **~ Rb~),(2-3)"" U - Ul, 2 ... , , 12-3 .P

then is an M-ary symbol that is equivalent to log2(M) bits of information.

4



The spread spectrum communication system in our study uses 32-ary symbols,

each symbol representing 5 bits of information; 32 chips are used to generate

a signal x (t) representing 1i1 (for i=1,2,...,32).

32
Thirty-two chips are capable of generating 2 2 different signals;

however, among the 232 prospective signals, only 32 which are orthogonal to

each other are chosen. There are various ways of generating 32-ary orthogonal

signals, and we will explore two of the methods in Chapter 6.

Suppose there exists a set of 32 orthogonal signals described by

X = {Xl(t), x2 (t), ... , x3 2 (t). (2-4)

A set of vectors

V = { W(t), 2 (t), ... , W3 2 (t)} (2-5)

forms the basis of the vector space ?32 of dimension 32 which is spanned by

the linearly independent vectors x 1 (t), x 2 (t), ... , x32 (t). Each signal x i (t)

is a linear combination of €l' *2' ""0' 32 such that

xt(t) = tl l + xi 2 O2 + *.. + xi32€32  (2-6)

where X1 l, x1 2 , ... , xi 3 2 are scalars. The orthogonality of the signals

implies that

<XiXi> = Es  I=1,2, ... 32 (2-7a)

<X ,X > = 0 1#j. (2-7b)

5
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2.1 Signal Space Formulation

The present discussion of signal space formulation is limited to the case

of having 32-ary orthogonal signals. The reader is referred to Carlson (2)

" for a generalized treatment of signal space formulation.

Suppose there are 32 orthogonal signals x1 (t), x2 (t), ..., x32 (t). Then

there exists a signal space c 32 containing all of the above signals; r,32 is

• spanned by an orthonormal basis (0l(t), f2 (t), ..., 32 (t)}, so that

32
xi(t) = _ Xik4k(t) (2-8)

where

Xik <xi,4k> = x(t) k(t)dt. (2-9)

An additive zero-mean gaussian white noise present in the transmission

medium may not be fully contained in C32' in which case it cannot be fully

described by a linear combination of the orthonormal basis vectors *l (t),

02(t), ..., 032(t) spanning the signal space r32 " But the noise nw(t) can be

described as a sum of two terms, one term representing the component vector

which does belong to 432 and the other term representing the component vector

which does not belong to 432" The noise can be represented as

nw(t) = n(t) + ne (t) (2-1 )

where n(t) is the projection of the vector nw(t) on C32 and ne(t) is the

I" . .
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irrelevant noise.

The relevant noise n(t) is a linear combination of the basis vectors and

is described by

32
n~t M nk~ t (2-11) ,

where

nk (t) - <n, k> = <nw ,  (2-12)

Whereas, for the irrelevant noise,

<nek> 0 0 k=1,2,...32 (2-13)

because ne (t) does not belong to the signal space 2

The detector for the system in our study has a bar of 32 correlators. A

received signal is correlated with 32 seperate locally generated signals so

that

<Y,Xl1> = r1I
<Y,X2> = r 2

<yx 32> r32  (2-14)

where rk is the output of the k'th correlator.

Note that

y(t) = xi(t) + nw(t) = xi(t) + n(t) + ne(t) (2-15)

7



Therefore, substituting for y(t),

<y,x.> <x +n+nex.> (2-16a) P

<y,xj> <xt,x> + <n,x > + <n,x >. (2-16b)

But

<n ,x.> = 0 (2-17)

so

<yx > <xi,xi> + <n,x.> (2-18a)

<yPxj> = <xi+n,x>. (2-18b)

Defining z(t) as the projection vector of y(t) on 32' 7
z() x i (t) + n(t) (2-19)

<yx >= <z,x.>. (2-28)

Assuming that only hard decisions are made, the symbol p corresponding

to the signal x.(t) to %hich z(t) lies closest in the signal space C32 is

chosen. For z(t) to lie closest to x.(t) the following condition must be

satisfied:

IZ-xjl Iz-xi! all ifj. (2-21)

8



rf x.(t) Is the transmitted signal, then

4Z(t) - x.i(t) - n(t) (2-22)

* -; Iz-xII = nt. (2-23)

where

InN = n,n>" 2  (2-24)

The inner product of the relevant noise with itself is the stum of the

magnitude squared of the component vectors as follows:

=nn> < @0n + 2 3 1n, ,n 2$2+ *0 n~32?32> (2-25a)

=2~ 2 2
<nn nj " + n + + n3  (2-25b)

where each nl has the following statistical variance:

2 2a =E(n. -E (2-26a)
En]

.2-2
an =n I -n 1  (2-26b)

But -

nw,0 (2-28)

9



because nw(t) is a zero-mean gaussian white noise. Therefore,

n 0. (2-29)

Using (2-29), (2-26b) is simplified as

a2 =n12 (2-30)

Thewhich can be written as E[ni2], is analyzed by first

deriving the relationship for E[ninJ. E(ninJ is defined as

SE~nin41 -E[! nw(t) 0,(t)dtf n,(1,,m(1)dl] • (2-31)

But since only nw(t) and nw(1) are random variables E[nin j ] can be rewritten

as

E[n (t)nw(1)] can be represented as an inner product of nw(t) and nw(1) as

E[nw(t)nw(l)] = <nw(t),n w (l)> (2-33)

E [n(t)nw(l) ]  <nw(t),nw(t-(t-1))>. (2-34)

Noting that

Rnw (t-l) <nw(t),nw(t(t-l))> (2-35)

a new relationship for E[nw(t)nw(1)] is found as follows:

E(n (t)nw(1)] R (t-l). (2-36)
VW flw
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.

The autocorrelation of white noise is

R () =(N /2)6(T) (2-37)
Ow0

Substituting (No/2)6(t-1) for R (t-l) in (2-36),

E[nw(t)n(l) - (No/2) 6(t-1) (2-38)

Furthermore, substituting (No/2)6(t-1) for Elnw(t)n(l)] in (2-32),

E(n nj I= (No/2)ffOi (t)*j(1)6(t-l)dtdl. (2-39)

Since *i(t) and *.(1) are orthonormal vectors, (2-39) can be simplified as

No/2 inJ, i

E0 { ifj. (2-40)

We note that for the case of i-j

2 2E(n 1 I I = No/2. (2-41)

By substituting No/2 for ni in (2-301) we get

a2  No/2. (2-42)
n 0

Note that ni is a statistically independent gaussslan variate with

variance No/2. The probability density function of nt is

P (n (7(Nol-1/2exp[-n'/N o ]  (2-43)

which is used to substitute for Pn, Pn2, .. , Pn32 in

11
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(Pn n 1P n 2 (n 2) P n3 (n 32 ) (2-44)

to get

Pn (n)=(N 0 )1exp [_n, AO J (2-45)

here

Dn112 un 2 +n 22+ n32 2. (2-46)

12



2.2 Maximum Likelihood Decision Rule

Given a Projection vector z(t), it is possible to choose the signal most

likely to have been transmitted. We impose the condition

IPoJIz) > P(IIjz) all i~j (2-47)

which, if satisfied, allows us to decide that V' is the most likely symbol to

have been transmitted.

Using the Bayes' rule

P(U1 lz) = P(11 1)p Z(ZIP i)/PZ(z) (2-48)

(2-47) is restated as

P (v t(j > POP )p Z(zIlJ.) all i~j. (2-49)

Assuming that every symbol has an equal probability of being transmitted,

(2-49) is simplified as

P Z(Z IPj > P Z 1I1) all ifj. (2-50)

Since z(t) given P' implies

n (t) =z~t W x (t) (2-51)

where 1A is represented by x1 (t00 PZ (z~li) can be written as

P (zI*A) P (Z-x1 ) (2-52)

Using (2-45) and (2-52) we get

13
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a]using (2-50) aix] (2-53) we get

exp)E-Iz-x.l121N] > expr-kz-x.12 /No3 (2-54)

w~hich is sirrp1ifie-I as

Iz-xjI 2 < flz-xio2  all i~j (2-55)

where

2z- =l <-io- (2-56)

<z-xioz-xg > fl2- 2<z~x) > 1ilJ 2  (2-57)

The energies for the signis z(') ard x (t) are defined as

E=R (0) = z112  (2-58a)

E R (0)zx., 2.E (2-59)

-zx"- 2(y,x. + Ex (2-69)

(z 1 x. > <y-l ,x.> <y,X.>. (2-61)
e i 1.

14



Bquations (2-55), (2-56), and (2-60) are used to get

<Z, > - (1/2)Ej > <z,x> - (1/2)Ei  all i#j. (2-62)

But w have a signal set whose 32 orthogonal signals have the property

(2-63)

32

When (2-63) is considered, (2-62) simplifies to

<Z,X.• > > z,x.> all ifj. (2-64)

J.

TO choose the symbol most likely to have been sent, the ndified decision
S. -

function is defined as

Di ' = <zx > <YX (2-65)

and pj is chosen such that

D.' > D.' all ifj. (2-66)

. . .....
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2.3 Decision Rules Utilizing the Erasure Syfols

The detector in our study is capable of declaring syi ol erasures. A

symbol erasure is declared when the received signal y(t) has unacceptably

degraded in signal quality due to the noise present in the transmission

medium. Expressed in another way, a symbol erasure is declared when the

probability of a symbol error becomes unacceptably high.

For the case of having a detector which is capable of declaring erasures, 1.

the function of the decision rule is not to minimize the Pe but to find the

optium ratio of to P*" Unfortunately, the optimum ratio is not fixed, it

is dependent upon SR,# the modulation technique used, and the decision rule

used.

The materials subsequent to Chapter 3 will analyze the optimization of

detection performance using different options in the decision rule used,

modulation technique used, and the correlation method used. But we will first

investigate PWs a function of PE and-

16-
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CHAPTER 3

PROBABILITY OF A WORD ERROR

The discussion in this chapter is based on a report ly Rosenstark and

Frank [3).

In this chapter, the term wrd error refers to the decodinq error of a

Reed-Solawmn (31,15) code. Thirty-one detected symbols, each of which may be

a correct symbol, a wrong symbol, or an erasure, are processed by the decoder

to generate a word consisting of 15 information symbols. The decoded word,

however, can be in error when there exists enrugh spybol errors and erasures. -

This chapter studies the relationships among PE' 2 e' and

The systen in our investigation uses the Reed-Solcmon (R-S) coding. The

R-S (31,15) decoder is capable of error-free decx.ding if

2e + E < 17 (3-1)

where

e = the nnber of syntbol errors, (3-2a)

E = the number of symbol erasures. (3-2b)

A word (code) error occurs if

2e + E = S (3-3-I)

where

S 17. '- -3b)

17
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Table 3.1. Some Combinations of Errors and Erasures
Which Cause Code Word Errors

2e+E=17 2e+E=18 2e+E=19 2e+-E=20
e E e E e E e E

0 17 0 18 0 19 0 20
1 15 1 16 1 17 1 18
2 13 2 14 2 15 2 16
3 11 3 12 3 13 3 14
4 9 4 10 4 11 4 12
5 7 5 8 5 9 5 10
6 5 6 6 6 7 6 8
7 3 7 4 7 5 7 6
8 1 8 2 8 3 8 4

9 0 9 1 9 2
10 0

Defining emi as the minimum nmuber of sybtol errors required for a word

error to occur, we see from table 3.1 that

e mi=0 (3-4)

for at least S equal to 17, 18, 19, and 20. We will define e as themax

imaximm number of synbol errors for a given value of S. An inspection of

table 3.1 shows that

e Ss/2. (3-Sa)
Mfx

It is also apparent that

= Ls/2J (3-5b)

18



where LxJ, the floor of x, is defined as the largest integer less than or

equal to x (the definition appears in Iverson [4]).

When a signal is detected, a symbol decision is made. The decision can '

* be correct, be in error, or be declared an erasure. The sum of the number of

errors and the numnber of erasures in an R-S (31,15) word cannot exceed the

total number of symbols in the word (there are 31 symbols in an R-S (31,15)

code word), or

e + E n 31 (3-6)-

which can be restated as

E n 31- e. (3-7)

Using (3-3a), the above becomes

E =S - 2e. (3-8)

Using (3-7) and (3-8) we arrive at the relationship

In the above, e must be a non-negative integer, therefore, emi is defined for

two different cases as follows:

min 0 if S 31. (3-10)

19



4.

Referring to (3-6), the maximum possible value of e is 31. By substituting 31

for ema x in (3-5b) we get

max(S) = 2(31) = 62. (3-11)

For a word error to occur, S must be an integer that takes on the following

relationship:

17 _ S :5 62. (3-12)

The probability of a word error is defined as

62
P =3P(S) (3-13)
w 17

where P(S) is

ema x  t

P(S) P (Sfle=k). (3-14)

min

Since emin in (3-10) exists for two different cases, P(S) also exists for two

different cases as follows:

S/2

P (S n e=k) if Szo31
k=S-31

P(S) = (3-15)

S/2

SP(S fl e=k) if S-31
k=0

where substitutions are made for ema x and emin using (3-5b) and (3-10).

P(Sfle=k) is defined as

20



P (S fl e=k) =(31) k (31-k') S-2k (31-S+k) P31-S+k~K e S-2K ~ ( 31-S+K) c(-6

where

P= probability of a symbol error, (3-17a)

SP= probability of a symbol erasure, (3-17b)

P = probability of a correct symbol. (3-17c)

Noting that

(31-S~k
31-S+k/ (3-18)

(3-16) is simplified as

P(Sf e-k) k s-2k PeE P " (3-19)

But

(31\ (31-k) 311 (31-k)!
k \S-2k/ (31-k) 1k! (31-S+k) ! (S-2k)! (3-20a)

31) (1-k)311
( S-2kk = k!(S-2k)1(31-S+k). (3-20b)

and

c= 1- E(P+P (3-21)

Using (3-19), (3-20b), and (3-21) we get

k S-2k ]31-S+k
P(Sfl e=k) 3liPePE " I-(Pe+PE)

kI (S-2k) I (31-S+k) " (3-22)
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Using (3-13) and (3-15) we write P w as

31 Sf2 62 Sf2

S-7kOS=32 ku'S-31P(f~)(-3

where P(Sfl e=J) is defined by (3-22).

as a function of P and P can be nuerically analyzed using (3-22)

and (3-23). The obtained data can be plotted in the form PEvs,. e* for

constant P,,. This was done for the values

=w 10-2, 1-3, .. , 61 (3-24) -

in fg. .1.The curves can be used as a tool to compare the

performances of various decision rules under various detector operating

conditions.
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Figure 3.1. Probability-lof-a-iword-error curves.
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CHAPTER 4

ANALOG SIGNAL DETECTION

r
--.. r 1  symbol Reed-"

• bank of 32 decision or Solomon output .
- correlators logic (31,15)

• device erasure decoder--

Figure 4.1. Diagram of detector and decoder.

correlator for x,(t) r .

_ correlator for xI It) r .i.-

x M

:; correlator frx 1(t) l
r 31

Figure 4.2. 32 correlator detection system.

Figure 4.1 illustrates the detection and decoding processes considered in

this chapter. The noise corrupted signal y(t) is processed by the bank of 32

correlators illustrated in fig. 4.2. Each correlator produces a correlator

output r. which is sent to the decision logic device. The device takes the 32

correlator outputs and decides upon a symbol belonging to the set

24



U = {P', V1 "" 1 3 11 erasure). (4-1)

The decoder receives the symbols until the 31 symbols making up a code

word are received. Forward-error correction is performed on the R-S (31,15)

code word, and the 15 information symbols are outputted.

2!o different decision rules were developed and analyzed. The decision

rules studied are the threshold rule and the ratio rule.

4.1 Threshold Rule

L
One variation of the threshold rule works as follows: If only one

correlator output equals or exceeds the threshold, then declare the symbol

corresponding to the largest correlator output as the received symbol. If the

above condition is not met, then declare an erasure.

This decision rule has a major flaw because the condition that only one

correlator output mist equal or exceed the threshold for a symbol decision to

occur causes the likelihood of an erasure occurring to substantially exceed

the likelihood of a symbol error occurring for the SNR ranges of our interest.

After reviewing the results of an initial numerical analysis, the analysis of

this decision rule was discontinued.

The second version of the threshold rule, which later proved to yield a

proper balance of symbol erasures and symbol errors, works as follows: If one

or more correlator outputs equal or exceed the threshold, then declare the

25
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symbhol corresponding to the largest correlator output as the received symbhol.

If either the largest correlator output does not exceed the threshold, or if

we have a draw, then declare an erasure.

Note that the threshold setting Is variable. Its variability serves to

control the ratio of Pto P~ If the incoming signal is weak, or if the SNR

is low, then the threshold should be set relatively low to prevent an

excessive occurrence of symbhol erasures. But if the incoming signal is

strong, or the SNR is high, then the threshold should be set relatively high

so that the axiimu correlation values which are relatively low can be

declared as erasures. Under the condition of a changing SNR, the threshold

setting must also change to achieve an optimum word error performance. We

will later see that this is not the case for the ratio rule. 7he distinct

advantage of the ratio rule over the threshold rule is that its optimum ratio

setting stays relatively fixed for the range of SNR of our interest.

The performance for the detection system using the threshold rule for its

decision logic device Is analyzed for orthogonal signalling and antipodal

signalling. For an informative discussion on the signalling techniques the

reader is referred to Pasupathy (5].
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4.1.1 Analysis of the Threshold Rule Performance for Orthogonal Signalling

Without going in depth into the correlation analysis we will state that

when an FSK modulated chip signal is correlated with a reference FSK modulated

chip signal, we get

E' E if the chips have the same frequency
r c c1
rc 10 if the chips have different frequencies (4-2)

where rc is the chip correlator output variable and E is the energy of thec c

FSK modulated chip signal.

Suppose a noiseless signal xi (t) is received. Because the signal

consists of 32 modulated chips, the i'th correlator peak output will be

r 32EC Es(4-3a)

where r. is the correlator output and E is the energy of the signal x (t).

But if x (t) is correlated by a j'th correlator (where i#j), then the

correlator output will be

r = 16Ec = (1/2)E s  (4-3b)

A code word c. consisting of 32 (bipolar) chips becomes a signal x (t)

when modulated. When c. is correlated with c. (where i#j), 16 chip positions1 J

will have the chips of same polarity and the remaining 1A chip positions will

have the chips of opposite polarity (the reader can verify this by using the

modified maximal-length sequences in figure 6.3 or the Welti codes in figure

6.5). When ci is correlated with itself, all 32 chip positions will have the
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chips of same polarity. Using (4-2) it can be seen that (4-3a) and (4-3b) are

true.

Given that every signal xi (t) (for i=0,1,...,31) has an equal probability

of being transmitted, we will assume throughout this report that x.(t) is

transmitted without any loss of generality.

Zero-mean white gaussian noise present in the transmission medium is also

assumed throughout the paper. For orthogonal signalling, r0 is gaussianly

distributed around the mean energy value of E with variance Es N /2. The

other correlator outputs are similarly gaussianly distributed, but the

distributions have the mean value of (1/2)E,.

Tb get an erasure we must have

r° <tE (4-4a)
0i "

< tEs  all i#0 (4-4b)

where t is the threshold variable and

0< t 51 . (4-5)

The probability of an erasure is formulated as

P = Q [ (l-t)Es/O] l-Q[(t-l/2)Es/all 31 (4-6)

where Q[xl is the probability that a gaussianly distributed variable X exceeds

the value x (refer to Abramowitz & Stegun [6]).
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A correct decision takes place when

r. y (4-7a)

r. < y i=l,2,.. ,31 (4-7b)

and

y _ tE s . (4-8)

The probability of a correct decision is formulated as

CD2 2 3e- "yEs /2 jlQ(Y_-/2)/°0 131 •  (4-9) :

Three types of a decision can be made by a decision logic device: a right

decision, a wrong decision, and a decision to declare an erasure. Regardless

of the probability of each event, the probability of any of the three events

occurring is 1, or

lap P +P(4-10a)1 Pe + PE + Pc

When P. and PC are known, the probability of an error is determined by using

the relationship in (4-10a) as follows:

Pe = I -PE -Pc"(4-10b)

Substituting for PE and P In (4-10b) using (4-6) and (4-9) we get

Pe = l-Q[ (l-t)Es/a] (l-Q[ (t-1/2)Es/c] }31

( -)'2 2 _ C( _ 31
tYEs)e- (-s (y-Es/2)/ao )dy. (4-11)
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The terms in (4-11) can be rearranged to yield

31P = Q[(l-t)E /a] [-{l-Q[(t-l/2)Es/ 1 I
e s

12 23
., 1 /t~se-(Y-Es) 22a }31]dy" :;

-0 1fte E {1-(l-Qfy-Es/2)/]l (4-12)

For very small values of Q which correspond to small values of Pe we can use

the two-term binomial expansion

(l+x) 1 + kx (4-13)

in (4-12) to obtain

Pe P 310 (l-t) Es/O] Q (t-1/2) Es/oJ

e- (y-E) /o] dy. (4-14)

Noting that

S O/" (4-15)

and

EI/=-4g sI (4-16)

(4-6), (4-12), and (4-14) are numerically computed. With the obtained data,
PEvs. P for constant values of E /N (SNR) were plotted in figure 4.3. The

loci of the constant t are also shown. Superimposing the P curves from

figure 3.1 on the above curves enables us to predict the detection system

performance.
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An examination of figure 4.3 reveals that we should set the threshold at

approximately t-0.8 to minimize the word error probability. Furthermore, we

observe that the change in word error probability is minimal as long as 0.7 <

t < 0.82, so the threshold can change an appreciable amount before large

changes take place in system performance.
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Figure 4.3. Threshold rule orthogonal signalling
per formiance curves.
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4.1.2 Analysis of the Threshold Rule Performance for Antipodal Signalling

Without going in depth into the correlation analysis we will state that

when a PSK modulated chip signal is correlated with a reference PSK modulated

chip signal, we get

E c if the chips have the same polarity

rc- {-Ec  if the chips have the opposite polarity (4-17)

where r is the chip correlator output variable and E is the energy of the
C C

PSK modulated chip signal.

Suppose a noiseless signal x (t) is received. Because the signal

consists of 32 modulated chips, the i'th correlator peak output will be

r. =32E =E (4-18a)
1 c s

where ri is the symbol correlator output variable and Es is the energy of the

signal xi(t). But if the j'th correlator correlates the signal x it) (where

i~j), the correlator output will be

r. = 03. (4-18b)

A code word cI consisting of 32 (bipolar) chips becomes a signal xi (t)

when modulated. When cI is correlated with c. (where i#j), 16 chip positions3,

will have chips of same polarity and the remaining 16 chip positions will have

chips of opposite polarity (the reader can verify this by using the modified

maximal-length sequences in figure 6.3 or the Welti codes in figure 6.5).
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.ien c. Is correlated with itself, all 32 chip positions will have chips of

same polarity. Using (4-17), it can be seen that (4-18a) and (4-18b) are

true.

The probability analysis for antipodal signalling is essentially the same

as the analysis for orthogonal signalling, but the statistical mean value for

r. (for i=l,2,...,31) is zero for antipodal signalling. Without retracing the

derivations we will simply state the necessary relationships as follows:

PE Q[(l-t)E s/c] {1-QtEs/oi }31 (4-19)

1 t - (y-E) 2 /22 31P - I e-s / -l-Q[y/aj) dy (4-20)
S

P Qfl-t)Es/all-fl-QrtEs/Ia]) I
ess

MO E)2 2 31
/2o l-(l-Q1y/a]1 Idy. (4-21)

Using the definition in (4-16), (4-19) and (4-21) can be numerically

computed. By plotting the curves as was done for orthogonal signalling we are

able to predict the probability of a word error.

The curves derived from the numerical analysis are shown in fig. 4.4. We

see that a threshold setting of t=0.58 yields low word error probabilities.

If t is varied over the range 0.5 < t < 0.62 the effect on word error

probability will be minimal.
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4.2 Ratio Rule

The threshold rule was a good decision rule to implement because the

variable threshold setting allowed for the control over the ratio of the

probability of an erasure to the probability of an error. But we noted that

the optimum threshold setting varies with the SNR of the received signal.

We pursued our investigation to find a decision rule whose optimum

threshold setting stays fixed when the SNR of the received signal varies. The

decision rule that satisfies the requirement is the ratio rule. The ratio

rule works as follows: Take the ratio of the largest correlator output to the

next largest output. If the ratio does not equal or exceed the ratio setting

d, which is a variable which takes on a value greater than 1.0, then declare

an erasure. If the ratio is equal to or greater than d, then declare the

symbol corresponding to the largest correlator output as the transmitted

symbol.

The ratio rule word error performance for analog correlation is analyzed

for orthogonal signalling and antipodal signalling.
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4.2.1 Analysis of the Ratio Rule Performance for Orthogonal Signalling

For the present analysis of the ratio rule performance, (4-2) and (4-3)

hold true.

To get a correct symbol decision, r must be the largest correlator

output, and it must exceed the next largest correlator output by a factor d;

r is gaussianly distributed around the mean energy value of E with variance

E N /2. The other correlator outputs are similarly gaussianly distributed,
so0

but the distributions have the mean value of (1/2)Es/No. The probability of a

correct decision is

11 'E2 /2a 2 31S e(r-Es) /2 (l-Q(r/d-E /2)/oil dr. (4-22)
PC N.W-. s

An error occurs if any of the 31 correlators, other than the 9'th

correlator, gives rise to an output ri, i=l,2,...,31, which exceeds the second

largest correlator output by a factor d. The probability of this occurring is

31 j e-(r-Es/ 2 ) 2/22 (l-Q[(r/d-E /2)/o] }3 0 (l-Q (r/d-E )/a Jdr.e s s (4-23)

To find the probability of an erasure we take the probability of a

correct decision and the probability of an error and express the probability

of an erasure as follows:

P= 1-P - Pc (4-24)

Note that the integration of a gaussian distribution from minus infinity to

infinity is equal to one. The relationship is expressed as
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O= e /r2/2 2dr. (4-25)

Using (4-22), (4-24), and (4-25), we get

4'Lfa 0 .7 -s) 2 2a21- 1-0 (r/d-E /2)/la] 31 dr -P ( 4-26)

For a very small PE' the two-term binomial expansion in (4-13) can be used to

approximate (4-26) as

31  -(-E' 2/22
P ' T f e-rs) Q(r/d-E /2)/aldr -P (4-27)

E a~TO- s e

Pe is numerically computed using (4-23), and PE is numerically computed

using (4-26) for high PE values and (4-27) for low PE values. With the

obtained data, PE vs. Pe for constant values of Es/N° are plotted in figure

4.5. The loci of constant t are also shown. Superimposing the Pw curves from

figure 3.1 on the above curves, a Pw vs. SNR plot, which enables us to predict

the detection system performance, is generated.

Figure 4.5 shows that the ratio setting of d=1.06 yields low word error .

probabilities. We find that the ratio setting is the optimum setting for all

values of Es/N° shown in the PE vs Pe graph. If d is varied over the rangesoe
1.03 < d < 1.10, then the effect on the word error probability will be

minimal.
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4.2.2 Analysis of the Ratio Rule Performance for Antipodal Signalling

For the present analysis of the ratio rule performance, (4-16) and (4-17)

hold true.

The probability analysis for antipodal signalling is essentially the same

as the analysis for orthogonal signalling, but the statistical mean value for

ri (for 11,2,...,31) is zero for antipodal signalling. Without retracing the

derivations we will simply state the necessary relationships for the

performance analysis as follows

Go22

Pc = 1 e- (r-Es) /202 (l-Q[r/dal) 31dr (4-28)

P 3 f e-r 2/2' (1-Q [r/do]l 138(l-Q((r/d-Es)l/oJ )dr (4-29)

2 3
.f e(r-Es) 2/ 2 2 [l-l-Q[r/ddj) 31]dr-P (4-30)PE 711Twr e s 2 e(3)

Using the definition in (4-16), (4-29) and (4-30) can be numerically

computed. By plotting the curves as was done for orthogonal signalling we are

able to predict the probability of a word error.

The curves derived from the numerical analysis of (4-29) and (4-30) are

shown in fig. 4.6. We see that the ratio setting of d=l.18 yields low word

error probabilities. The ratin setting is optimum for all values of Es/No

shown in the P vs. P graph. If d is varied over the range 1.11 < d < 1.28,
E e

then the effect on the word error probability will be minimal.
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4.3 Discussion of the Results of the Analog Correlation Analysis

We analyzed the performance of a detection system using the threshold

rule and of a detection system using the ratio rule for orthogonal signalling

and antipodal signalling.

Comparing the performance results of the threshold rule and of the ratio

rule, we find that the optimum ratio setting for the ratio rule is relatively

invariant with respect to changes in S!IR, whereas we see the optimum threshold

setting for the threshold rule varying with changes in SNR. %ben the

detection system performance for ratio rule is compared with the performance

for threshold rule the ratio rule performance is slightly better. We can

conclude that for the case of analog correlation, the ratio rule is better

than the threshold rule.

When the detection system performance for orthogonal signalling and for

antipodal signalling are compared, we find that antipodal signalling achieves

the same probability of a word error as orthogonal signalling for 6 dB less

than the SNR required for orthogonal signalling. Therefore, antipodal

signalling proves to be better than orthogonal signalling in terms of

detection system performance.

In this chapter we analyzed the detection system performance for analog

correlation. As seen in fig. 4.2, the symbol detector consists of 32

correlators, each holding a reference signal corresponding to a 32-ary symbol.

Each correlator produces an analog output. The correlator outputs are used by

the decision logic device to make a symbol decision.
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CHAPTER 5

DIGITAL SIGNAL DETECTION

This chapter investigates the detection system performance analysis for

the case of digital correlation. For this case, the received signals are

digitized on a chip-by-chip basis.

The chief advantage to the use of digitization is that it simplifies the

hardware design and implementation. But digitization carries the penalty of a

small performance degradation when compared to the system performance for

analog signal processing.

A block diagram of the digital detection system is shown in fig. 5.1.

For the digital detection system, a chip detector precedes the bank of digital

correlators. There are 32 digital correlators, each corresponding to a 32-ary

symbol.

Each symbol is represented by a code of 32 chips. An i'th correlator

correlates the code from the chip detector with its reference code c i and

generates the quantized correlator output r i, where r1 --32,30,... 0,...,30p,32

and i=0,l,...,31. Upon completion of the digital correlation process, the

decision logic device takes the symbol correlator outputs and decides upon a

symbol from the symbol set

U = P, PI' ".' )131' erasure) (5-1)

using either the threshold rule or the ratio rule. The symbol decision is
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* sent to the Reed-Solomon decoder. The decoder takes the 31 symbol decisions

comprising an R-S (31,15) code and decodes it into 15 information symbols.

r3
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* The decision rules developed and analyzed for analog correlation in the

last chapter will be analyzed for digital correlation in this chapter. Ihe

results of the digital correlation analysis will be compared with the results

of the analog correlation analysis. Because of the quantization of signals in

digital correlation, we expect some level of performance degradation when

compared to the system performance achieved with analog correlation.

For this chapter, we considered antipodal signalling for modulating the

chips. For orthogonal signalling, we add 3 dB to each constant SNR curve.

5.1 Analysis of DigitalSignal Detection

Assuming that the chips comprising a code word are transmitted using

antipodal signalling and the energy in the received signal is E, the

probability of a chip error occurring at the chip detector is

Pce =[ 2/3N](5-2)

s 0

spectral density of white noise. The relationship in (5-2) is used to

formulate various probability relationships necessary for performance analysis

of digital signal detection. We6 study the four basic probability analyses

fundamental to our performance analysis.
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Case 1: The probability that ri--t for i#0.

There are 32 digital correlators in the digital detection system. Since

it was assumed that xN(t) is the transmitted signal the correlator outputs are

seperated into two cases: r and r. (for i=1,2,...,31). Because we are
1'.

S-. dealing with orthogonal codes, for noiseless channel, the correlator outputs

have the values

r= 32 (5-3a)

r = 0 i=1,2,...,31. (5-3b)

We will refer to rI for which i=l,2,...,31 as ri, and ri for which i=0 as r0

throughout the report.

The range of ri depends on the 0 to 32 possible chip errors in a 32-chip

sequence. Figure 5.2 illustrates all possible values of ri given k, the

number of chip errors.

We explain fig. 5.2 by using examples. With no error, ri is 0 because it "

is the sum of 16 l's (sign agreements) and 16 -l's (si-- disagreements) in the

chip-by-chip correlation of c. and cj, where i#j. With one error, ri can be1 J

-2 when it is the sum of 15 l's and 17 -l's, or ri can be 2 when it is the

sum of 17 l's and 15 -l's. We can do the same calculations for other k values

(the number of chip errors) and verify the results in fig. 5.2.
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The probability that rj is greater than or equal to t can be expressed as

P(rikt) = P[riatjk] P(k) (5-4)k=rt/21

where L32-t/21 is the floor of 32-t/2, or the greatest integer less than or

equal to 32-t/2, and rt/21 is the ceiling of t/2, or the least integer greater

than or equal to t12. The probability is equivalent to the sum of the

probabilities of all the coordinate points located at or above the line ri=t.

P(k) is the probability of k errors occurring in a 32-chip code word.

The k errors in a chip sequence can arrange themselves in many different ways,

requiring a combinatorial analysis. P(k) is expressed as

P(k) = (32) 2 ce (-Pce) 3 2 - (5-5)

where P is the probability of a chip error as defined in (5-2), and (1-Pe)
ce ce

is the probability of an error-free chip. Combining (5-4) and (5-5), we

obtain

L32-t/2-
P(r.l = I Plr.tl k ] k2) Pe (1-P)32_k" (5-6)k= rt/21

The number of chip errors k can be defined as

k =k I + k2  (5-7)
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where k is the number of chip errors which cause a positive contribution to

the correlator output and k is the number of chip errors which cause a2

negative contribution to the correlator output. The reader is referred to

fig. 5.2 to note that chip errors cause only even Integral contributions to

the symbol correlator outputs. Using (5-7), (5-6) is expanded to get

P ~r 16 k (16)( 16) e-e32-k(kI't -- 1 P ""Pc

krt/21 k 1=r(t+2k) /41 1

L32-t,2J 16(l\(6 l)3k(5)

points occurring at or above the horizontal t line along the vertical constant

lines. This approach required us to break the expression into two terms. A

more simplified equation was later derived when the probabilities of the .-

points occurring at or above the horizontal t line along the diagonal constant

k1 lines were summed. The expression derived is

16 r~k -t/21 (6~f 6 1P~3-
P(r it] = 1 16) \k-32-ckc . (-

'" (16~~) Pce(lPce32k".'
Plri>'t]( 1 k (t2 ~k k) k- k 1  " (5-9) . :

k 1 rt/21 kk

This Is the final expression describing the probability that ri is greater

than or equal to t. The two independent variables in the equation are t and
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Case 2: The situation in which r--t.

We would like to find the probability that r is greater than or equal to

t. Note that r is 32 when there exist no chip errors. But with each chip

error, the r value is decremented by 2. The maximum allowable number of chip

errors in a 32-chip code is 32, in which case the r value is -32. The .-.

probability that r0 is greater than or equal to t is written as

L1-t/2J 32 32-k
Prr0 -t] k )ce ce- . (5-li)

k=O

The two independent variables in (5-10) are t and Pce"

ii
Case 3: The case in which r.=2I.

1

Referring to figure 5.2, the probability that rt equals an even integral

value 21 is the sum of the probabilities of the points occurring coincident to

the horizontal line rt-Io21. Along such a line k and k1 are related as

4k l-=2I. The probability is expressed as

P~r =2]=16 16~ (16) (P ) - )32-2k +IPl=1 E Q) (k - ec (5-11)

k 1=I
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Case 4: The case in which r0=21.

Finding the probability that ro equals an even integral value 21 is

rather straightforward. Note that the r value in the absence of chip errors

is 32; r0 and k are related as

k = (32-r0 )/2. (5-12a)

When 21 Is substituted for r0 in (5-12a) we get

k =16 -I. (5-12b)

The probability that r equals 21 is

P(r021 k (3) ce) (l-Pce) 32k(5-13a)

But when 16-1 is substituted for k we get]

P[r0 =21 = 32) ( 1 16+1 (5-13b)

Having obtained the expressions for P(ri-tj, P(r0 mt], P(ri=2I, and

P(r0=2I] we can proceed to evaluate the error probabilities and erasure

probabilities associated with the threshold rule and the ratio rule.
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5.2 Threshold Rule Analysis

For a correct symbol decision to occur, r0 must be greater than or equal

to the threshold setting t, and all ri (for i=1,2, .... 31) must be less than ::

ro, Since the correlator outputs are even integers, they can be represented

as 21, I being any integer. The expression for the probability of a correct

decision is given by

~~1 6 .:" P c =  ~ r 2 I ) 1 -P 2 I ) 3 1 .o (r 1 (5-14)

P Frt/21

For an error to occur, one of the ri correlator outputs must be the

largest correlator output and must equal or exceed the threshold t, and the

rest of the correlator outputs, including ro, must be less than the largest

correlator output value. The expression for the probability of an error is

given by

16

Pe= 31 . P(ri=21) [P(r i- 21)] 3P(r0--21). (5-15a)I=lR/21

Putting this in terms of the previously defined terms, we obtain

16

P 31 L P(r =2I)(1-P(r E,21)] 30l-P(r 22)]. (5-15b)

The probability of an erasure is formulated by simply taking the

probability of a correct decision and the probability of an error, which are

defined in (5-14) and (5-15b), and subtracting them from 1 as follows
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PE -P - Pe (5-16)

PE and Pe are numerically computed and the curves are plotted to predict

the digital detection system performance using the threshold rule. The

performance curves found in fig. 5.3 show that the threshold should be set at

t-12 to yield the lowest word error probability. The threshold setting can be

varied in the range of 10 < t < 14 without substantially affecting the

probability of a word error.
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5.3 Ratio Rule Analysis

For a correct symbol decision to occur, r0 must be greater than or equal

to d times the largest rj value, where d is the ratio setting which can take

on any real value that is greater than 1. When errors are introduced, the r0

and ri values must be even integers ranging from -32 to 32. For the ratio

rule, we approximate our analysis by assuming that the probability of 17 or

more chip errors occurring in a code of 32 chips is insignificant. Therefore,

we restrict our analysis to the case where only 16 or fewer chip errors occur.

We make the above restriction because the ratio rule performance analysis

becomes complicated when negative r0 values are introduced. We express the

probability of a correct decision as

16

P =  P(r0=21)fl-P(ri1d(21))]
31 -  (5-17)

For an error to occur, one of the ri correlator outputs must be the

largest correlator output which equals or exceeds a value that is d times the

value of the second largest correlator output, where d is the variable ratio

setting which takes on a real value that is greater than 1. The probability

of an error can be expressed as

16
30

P= 31 _ P(ri=21)l[-P(ri!d(2I))1 [l-P(r 0 d(2
1 ))] (5-18)

The analysis of the probability of an erasure is not easy because it

involves many different cases of an erasure, so we define the probability of

an erasure as 1 minus the sum of the probability of a correct decision and the
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probability of an error, or

P I- Pc -p. (5-19)
E C e

We can numerically compute the P and Pe equations and plot the curves to

predict the digital detection system performance when the ratio rule is used.

The performance curves are shown in fig. 5.4. The optimum value of d is 1.25

for the SNR range of 8 dB to 11 dB. It is not critical to mn.intain this value

of d because low word error probabilities can be obtained for a broad range of

values of d.
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I 5.4 Discussion of the Results of the Digital Correlation Analysis

Comparing the performance results of the two decision rules, we find the

optlimm ratio setting for the ratio rule and the optimm threshold setting for

the threshold rule are relatively invariant with respect to changes in E AJ
5 0

This was not the case for the threshold rule of analog correlation. For the

digital correlation case studied in this chapter we find no distinct advantage

of one decision rule over the other.

Recall that for the digital correlation case the chip detector outputs

are quantized. This means that the correlation values are quantized into even

integral values ranging from -32 to 32. The quantization of the correlator

outputs also quantizes the values that the threshold setting of the threshold

rule can take on. The threshold setting can have an even integral value which

ranges from 0 to 32. However, the values that the ratio setting for the ratio

rule can have due to quantization are not easy to see, but we do find discrete

ratio settings which do affect the system performance. For example, the

system performance is not affected unless the ratio setting makes a transition

through any of the following values: 1.0,1.15,1.18,1.20,1.25,1.33,1.41. Of

course, d can have higher values, but they were not observed because they fell

out of the range of d vAlues of our interest.

There is a noticeable performance degradation when digital correlation is

used instead of the analog correlation. In terms of SNR, we see less than 1

dB performance degradation when digital correlation is used. The small
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degradation in the system performance is acceptable when we consider that the

design and implementation of the digital detector is simpler than the analog

detector.
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CHAPTER 6

MONTrE CARLO SIMULATION

in Chapter 5 the detection system performance for various cases was

analyzed. The derived equations were numerically analyzed, and the data

obtained were used to plot the performance curvet:. In this chapter we try to

simulate the operation of the digital detection system and obtain performance

data which can be compared with the data derived from the analysis. The Monte

Carlo simulation method is used to process signals which are noise corrupted.

Antipodal signalling was considered. The decision rule used was the threshold

rule.

6.1 The Simulation Program

The digital detection system shown in fig. 5.1 was chosen for the Monte

Carlo simulation. The operation of the chip detector, the bank of 32

correlators, and the decision logic device using the threshold rule are

modeled by the simulation program.

The system uses 32-chip codes which have orthogonal correlation

properties. The maximal-length sequences and the Welti codes are investigated

for use as the operating codes. The performances for the two cases are

compared to each other and to the performance predicted by the analysis in

Chapter 5. we will later see that the simulation using the modified

maximal-length sequences and the simulation using the Welti codes yield
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identical performance results, but the simulation results do not sufficiently

agree with the results obtained from the analysis.

The simulation repetitively processes x0 (t) which is corrupted with

random noise; 10,000 samples of 32 detected chips are collected, and the

*i symbol decisions are evaluated to find the relative frequencies of symbol

erasures and symbol errors.

6.1.1 Chip Detector

The operation of the chip detector is modeled using the random number

generator. We use the relationship

P - Q[Rs/32NIj (6-1)

to relate the given SNR to Pce" The random number generator is used to

generate independent chip errors at the relative frequency that approaches the

probability of a chip error for a large number of chip samples. For 10,000

samples of a 32-chip code, it is typical to find the relative frequency of

chip errors accurate to 3 significant digits when compared to the given

probability of a chip error.
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6.1.2 Digital Correlators

An i'th digital correlator takes the 32 detected chips and correlates it

with the reference code c i . The correlation output r. can take on an even
1

integral value ranging from -32 to 32. As stated earlier, x is assumed to be

transmitted without any loss of generality. Since we are dealing with

orthogonal codes, under the noiseless condition, we should find that

r= <c 0 ,c 0 > = 32

r = <coCl> = 0

r2 =<c01 c 2> = 0

r31= <c0,c31> = 

6.1.3 Decision Logic Device

The decision logic device takes the 32 correlation outputs and makes a

symbol decision using the threshold rule. The threshold rule makes a symbol

decision if the threshold criterion is met, but if the threshold criterion is

not met then an erasure is declared. An erasure is declared when the received

signal has unacceptably degraded in signal quality due to the noise present in

the transmission medium.
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The threshold rule is implemented in the simulation as follows: If the

largest correlator output equals or exceeds the threshold, then tleclare the

symbol corresponding to the correlator as the received symrbol. If either the

largest correlator output does not exceed the threshold or if we have a tie,

then declare an erasure.

Since we know Which synbol is sent (we assLMe3 that 10 is sent throughout

the report), we c-n take a symbol decision ard determine if the decision was

correct or if it was in error. By counting the occurrences of errors and

erasures, we are able to find the relative frequencies of errors and erasures.

6.2 Codes

Codes are a set of code words used to generate signals. For the spread

spectrum ccmmunication sistem that we examined, each 32-arj symbol is

represented by a code wrd of length 32. Although the actual codes used are

psuedo-orthogonal, for simplicity of analysis, we assume codes with orthogonal

correlation properties.

The two codes investigated are the maximal-length sequences and the Welti

c.-des. 'he codes were used to simulate the system operation an obtain the

performance data. The data were used to plot the performance curves.
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6.2.1 Maximal-Length Sequences

In this section, a methodology for producing maximal-length sequences of

length 31, each having the periodic correlation function

O(T T#0 (6-2)

Is discussed. 7he maximal-length sequences are then modified to yield codes

of 32 chips having the orthogonal correlation properties. if the reader is

interested in a general discussion of binary maximal-length sequences, then

the reader is referred to Bhargava, Haccoun, Matyas, and Nuspl (7).

Maximal-length sequences, or r-sequences, can be generated by a linear

feedback shift-register generator (LFSRG). Given an rn-stage LFSRG, a set of

maximal-length sequences of length N can be generated, where

N =2'-.(6-3)

Although we would like to get 32-ary code words, (6-3) tells us that this is

not possible. We can take the next best choice of generating 31-ary code

words. As it turns out, it is possible to modify the maximal-length

sequences so that we can obtain 32-ary code words with orthogonal correlation

* properties.

To get a set of maximal-length sequences of length 31, a 5-stage LFS.

nust be used. We use the equation,

)2 x' (6-42) -

h x) 110+ h1 x +h 2 x + h 3x + h 4x + h 5x(-a
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where h(x) is the associated polynomial of the shift register with feedback

coefficients (h0,hl,...,h5). If the feedback coefficients are defined as
h =l, h--0, h2=l, h3=0, h4= 0, h5=l, corresponding to the entries in the

connection vector (101001) for a 5-stage shift register, the equation can be

simplified as

2 5
h(x)= +x + x. (6-4b)

The 5-stage LFSPG modeled by (6-4b) is shown in figure 6.1. The initial state

is assumed to be (10000), but any set of 5 binary digits that is not (00000)

can be used. The output from the last stage of the shift register is used to

sequentially extract maximal-length sequences.

1 0 0 0 0

Figure 6.1. 5-Stage Linear Feedback Shift-Register Generator.

A sample maximal-length sequence is found in fig. 6.2a. A second

maximal-length sequence is found in fig. 6.2b. Each maximal-length sequence

generated by an LFSRG is a cyclical shift of another. In order to have a

binary (+l,-l) chip sequence, we convert all O's into -11s. The binary (1,r)

sequence in fig. 6.2a becomes the binary (+i,-I) sequence in fig. 6.2c, and

the binary (1,0) sequence in fig. 6.2b becomes the binary (+i,-I) sequence in
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fig. 6.2d. The periodic correlation function for the binary (+1,-i) sequence

is given by

31 T=0 ii
O1) = {IT (6-5)

0 0 0 10 10 1110 110 0 0 111110 0 110 10 0 10

a. A sample maximal-length sequence of length 31.

0 0 10 10 1110 110 0 0 1 1 1110 0 110 10 0 10 0

b. Another maximal-length sequence of length 31.

'," ~-1-1-1 1-1 1-1 1 1 1-1 1 1-1-1-1 1 1 1 1 1-1-1 1 1-1 1-1-1 1-1 '":

c. A binary (+1,-i) sequence obtained from the sequence in fig. 6.2a.

-1-1 1-1 1-1 1 1 1-1 1 1-1-1-1 1 1 1 1 1-1-1 1 1-1 1-1-1 1-1-1

d. A binary (+l,-l) sequence obtained from the sequence in fig. 6.2b.

1 1-1-1-1-1-1 1 1-1-1 1-1 1 1-1 1 1 1 1-1 1-1 1-1-1-1 1-1-1 1

e. A sequence of chip correlation outputs.

Figure 6.2. Maximal-Length Sequences of Length 31.

Thirty-one maximal-length sequences are shown in fig. 6.3a. Each

sequence can be used to represent a 31-ary code word. To generate 32-ary

- codes with orthogonal correlation properties, we append the digit -1 to each

-°
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of the 31 sequences, and we add the 32nd sequence, which consists of 32 l's,

to the set of 31 sequences. he 32-ary orthogonal codes are illustrated in

fig. 6.3b. The code words in fig. 6.3b have orthogonal correlation properties

as follows:

a. When a code word ci is correlated with itself, we get r. f 32,

where ri is the correlation output of the i'th correlator.

b. When a code word ci is correlated with a code word ciI
(where Ij), we get r. = 0.

~-1-1-1 1-1 1-1 1 1 1-1 1 1-1-1-1 1 1 1 1 1-1-1 1 1-1 1-1-1 1-1

a. -aximal-length sequences of length 31.

-- 1-1 1-1 1-1 1 1 1-1 1 l---1 1 1 1 1 1-1-1 1 1-1 1-1-1 1-1-1

--1-1 1-1 1-1 1 1 1-1 1 1-1-1-1 1 1 1 1 1-1-1 1 1-1 1-1- 111

ale codes of length 32 in fig. 6.3b are used in the Monte Carlo

simulation to produce the signals representinrl the 32-ary symbols.

Performance data are obtained for 10,000 samples of noise corrupte signals.

The performance curves derived from the data are shown in fig. 6.4.
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Figure 6.4. Monxte Carlo simulation of digital correlation
using the maximal-length sequences.
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Figure 6.5. Comparison of the simulation and calculation
curves.
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Figure 6.5 shows that the simulation performance is worse than the performance

predicted by the analysis by about -1/2 dB. Because of this difference in the

performance results, we've investigated the use of another orthogonal code.

6.2.2 Welti Codes

The Welti codes (8] have orthogonal correlation properties. The codes

are generated as follows: Let Dk represent the k'th code word of length 2

D A:B (6-6)

where the word is divided into sets of lengths 2i-. From this word the

following are obtained:

OkI+1 A :B: A: ) (6-7)

i+I
Dk+2 i (A:B:A:B) (6-8)

where x - complement of x. For example,

D1)

D1= ( 1 -1)

Thus

2
D 0 1 1 1 -1)

202=(l I1-1 1) .
D-...

2'



- -- -,- -

2D= (1I-1 1 1)..='"

2

3

3

3 .
D= ( 11 1 -1 1 1 -1 -1)

3

5
3
3
D1 2 1 -1 -1 1 1 -1 -1 -1)

7

whc3eeae h wod, ,D,.. s mlmntdi teMnt ial

3

D 3 = (1 -1-1 -1 1 -1 1 1).':i

Similarly, we can generate words of length 32. A Welti codes generator

5 5 5is implemented in the Monte Carlo

simulation program. 7he set of Welti codes of length 32 is shown in figure ii

6.6.

Results were obtained from the Monte Carlo simulation using the Welti

codes. With the obtained data, PE vs. Pe for constant values of EsINO were

plotted in figure 6.7. The loci of the constant t are also shown. The P

curves from figure 3.1 were superimposed on the above curves to generate a P
w

vs. SNR plot, which enables us to predict the detection system performance.
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Figure 6.7. Monte Carlo simulation of digital correlation
using the Welti codes.
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The simulation results for the Welti codes agreed very well when compared

to the simulation results for the modified maximal-length sequences. When the

simulation results are compared with the results obtained from the performance

analysis, we find that the simulation results deviated by an average of 0.5

dB.
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6.3 Discussion of the Results of the Simulations-

Monte Carlo simulation was used to verify the results obtained from the

4 digital detection system analysis. The operation of a digital detection

system using the threshold rule for its decision logic device was simulated.

IWro sets of orthogonal codes were investigated for possible variations in the

performance results.

when the performance results of the Monte Carlo simulation using the

maximal-length sequences are compared with the performance results of the

Monte Carlo simulation using the Welti codes, the results agreed very well as

expected for any orthogonal codes of length 32. The simulation results,

however, were found to deviate from the results of the analysis by an average

of 0.5 dB. Further investigation revealed that the deviation of the

simulation results from the results of the analysis is due to a slight

statistical correlation among the noise corrupted orthogonal codes. An

in-depth analysis of the statistical behavior of the noise corrupted

orthogonal codes is recommended for future research in this area.
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CHAPTER 7

CONJCLUS ION

We started our investigation with the analog detection system. There we

investigated the performance of the system which uses the threshold rule and

the system which uses the ratio rule. The ratio rule was found to have an

optimum ratio setting which was invariant with respect to changes in the SNR.

We next investigated the digital detection system. The threshold rule

and the ratio rule were found to have the parameter setting which was

invariant with respect to changes in the SNR. Compared to the performance of

* analog detection, the system performance for digital. detection was worse by

* less than 1 dB.

Finally, Monte Carlo simulation of the digital detection system using the

threshold rule was conducted. The results obtained From the Monte Carlo

simulation using the maximal-length sequences agreed with the results obtained

from the Monte Carlo simulation using the Welti codes. An average of 0.5 dB

deviation was found when the simulation results were compared with the results

of the digital detection system performance analysis. An in-depth analysis of

the statistical behavior of the noise-corrupted orthogonal codes is

recommnended for future research in this area.
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The authors' understanding of the performance degradation due to self
jaumming in spread spectrum commnunications systems evolved to .4 large extent
from discussions with Mr. Israel Mayk of the Center for Systems Engineering
and Integration (CENSEI).
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LIST OF ACRONYMS AND SYMBOLS

C2  comnand and control

C command, control, and comunications

e number of symbol errors

E number of symbol erasures

E cE peak chip-autocorrelation value

E peak symbol-autocorrelation value
.

emin minimum value of e given S

ea x  maximum value of e given S

E /N signal-to-noise ratio
so0

FSK frequency-shift keying

LFSRG linear feedback shift-register generator

P probability of a correct symbolc •i

P probability of a chip error
ce

Pe probability of a symbol error

P E probability of a symbol erasure

P(k) probability of k errors occurring in a 32-chip
code word

PW probability of a word error

PSK phase-shift keying

R-S Reed-Solomon (code word)

S a value which is equal to 2e plus E

SNR signal-to-noise ratio
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